Noradrenalin and dopamine receptors both control cAMP-PKA signaling throughout the cerebral cortex

نویسندگان

  • Shinobu Nomura
  • Maud Bouhadana
  • Carole Morel
  • Philippe Faure
  • Bruno Cauli
  • Bertrand Lambolez
  • Régine Hepp
چکیده

Noradrenergic fibers innervate the entire cerebral cortex, whereas the cortical distribution of dopaminergic fibers is more restricted. However, the relative functional impact of noradrenalin and dopamine receptors in various cortical regions is largely unknown. Using a specific genetic label, we first confirmed that noradrenergic fibers innervate the entire cortex whereas dopaminergic fibers were present in all layers of restricted medial and lateral areas but only in deep layers of other areas. Imaging of a genetically encoded sensor revealed that noradrenalin and dopamine widely activate PKA in cortical pyramidal neurons of frontal, parietal and occipital regions with scarce dopaminergic fibers. Responses to noradrenalin had higher amplitude, velocity and occurred at more than 10-fold lower dose than those elicited by dopamine, whose amplitude and velocity increased along the antero-posterior axis. The pharmacology of these responses was consistent with the involvement of Gs-coupled beta1 adrenergic and D1/D5 dopaminergic receptors, but the inhibition of both noradrenalin and dopamine responses by beta adrenergic antagonists was suggestive of the existence of beta1-D1/D5 heteromeric receptors. Responses also involved Gi-coupled alpha2 adrenergic and D2-like dopaminergic receptors that markedly reduced their amplitude and velocity and contributed to their cell-to-cell heterogeneity. Our results reveal that noradrenalin and dopamine receptors both control cAMP-PKA signaling throughout the cerebral cortex with moderate regional and laminar differences. These receptors can thus mediate widespread effects of both catecholamines, which are reportedly co-released by cortical noradrenergic fibers beyond the territory of dopaminergic fibers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex

The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The prese...

متن کامل

Sigma-1 receptors amplify dopamine D1 receptor signaling at presynaptic sites in the prelimbic cortex.

Sigma-1 receptors are highly expressed in the brain. The downstream signaling mechanisms associated with the sigma-1 receptor activation have been shown to involve the activation of protein kinase C (PKC), the control of Ca(2) homoeostasis and the regulation of voltage- and ligand-gated ion channels. But few studies examined the regulatory effect of sigma-1 receptors on metabotropic receptor si...

متن کامل

Addicting drugs utilize a synergistic molecular mechanism in common requiring adenosine and Gi- dimers

The mesolimbic dopamine system and cAMP-dependent protein kinase A (PKA) pathways are strongly implicated in addictive behaviors. Here we determine the role of dopamine D2 receptors (D2) in PKA signaling responses to -opioid (DOR) and cannabinoid (CB1) receptors. We find in NG108-15 D2 cells and in cultured primary neurons that a brief exposure to saturating concentrations of DOR and CB1 agonis...

متن کامل

Dopamine modulates inwardly rectifying potassium currents in medial prefrontal cortex pyramidal neurons.

Dopamine (DA) modulation of excitability in medial prefrontal cortex (mPFC) pyramidal neurons has attracted considerable attention because of the involvement of mPFC DA in several neuronal disorders. Here, we focused on DA modulation of inwardly rectifying K(+) current (IRKC) in pyramidal neurons acutely dissociated from rat mPFC. A Cs(+)-sensitive whole-cell IRKC was elicited by hyperpolarizin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014